Zellverfolgung und -analyse in Echtzeit

HSA intern entwickeltes Deep Learning


Verfolgen von Veränderungen der zellulären Morphologie und des Verhaltens in Abstimmung mit den umgebenden Zellen. Zellen mit zunehmender Fläche sind blau, mit abnehmender Fläche rot markiert. Länge der einzelnen Zellgrenzen, Umfang, Fläche und Perzentilveränderung im Vergleich zum vorherigen Bild (Δ Fläche, Δ Umfang) werden in Echtzeit verfolgt.

igenentwickelte KI-Netzwerke:
  • + Zellenrand-Lücken im Originalbild werden intelligent geschlossen
  • + Automatische Verfolgung der Länge der individuellen Zellgrenzen, der Änderungen der Zellmorphologie und des Verhaltens in Abstimmung mit den umgebenden Zellen
  • + Visuelle Darstellung ausgewählter Morphologieänderungen (Fläche, Zirkularität, Verhalten der Nachbarzellen usw.)
  • + Einfacher Export aller statistischen Daten in eine Exel-Datei

 

Standard Deep Learning U-Net


Einfache intensitätsabhängige Annotation der Zellgrenzen gegenüber dem Originalbild





Altes U-Net basierendes KI Netzwerk:
  • – Lücken im Originalbild werden nicht geschlossen, wodurch die anschließende statistische Analyse beeinträchtigt wird
  • – Verfolgung zellulärer Parameter schwierig oder nur durch zusätzliche Programme möglich
  • – Keine visuelle Darstellung ausgewählter Veränderungen der Zellmorphologie



Zählung und Segmentierung von
Zellen in Kammerobjektträgern

Nachweis und Segmentierung von Kernen und Zytoplasma in kultivierten Zellen in Kammerobjektträgern.





Segmentierung von Tumor
und Stromazellen

Segmentierung von Kernen und Zytoplasma in Tumorzellen und zytoplasmatischen Regionen in Stromazellen. Wenn die Kernfärbung nicht vorhanden oder unspezifisch ist, können Kerne durch Kern-„Löcher“ in der Zytoplasmafärbung nachgewiesen werden.



Analyse der Niere

Segmentierung von Glomeruli und Tubuli unter Verwendung eines Deep-Learning-Modells für Brightfield Daten.



Analyse der Niere

Segmentierung der Glomeruli und ihrer Kompartimente unter Verwendung eines Tensorflow-Modells für Brightfield Daten.



Zählen von Zellen

Segmentierung und Zählung von Zellen.  







Endoplasmic Reticulum

Das endoplasmatische Retikulum (ER) ist eine dynamische Struktur, die aus verzweigten Bereichen und röhrenförmigen Abschnitten besteht. Die automatische Segmentierung eröffnet neue Möglichkeiten für quantitative Analysen und eine effiziente Darstellung dieser Membranstruktur auf der ultrastrukturellen Ebene.



Scratch Assay

Analyse von Proben mit Kratzern und der Veränderung der Zellfläche über die Zeit.



Internalisierung

Analyse der Insulinrezeptoren innerhalb und außerhalb des Zytoplasmas und die Veränderung im Laufe der Zeit.



Analyse von Blutgefäßen

Blutgefäße können mit Immunhistochemie markiert werden. Dies ermöglicht die Zählung von Blutgefäßen und die Analyse ihrer Verteilung.




Echtzeit-Erkennung auf Mikroskopiegeräten

Sie schauen durch das Mikroskop und sehen in Echtzeit Markierungen der für Sie relevanten Objekte. Anschließend erfolgt eine automatische Quantifizierung der erkannten Objekte.